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Subgraphs and Induced Subgraphs

G = {V ,E}

Subgraph

G ′ = {V ′,E ′} where V ′ ⊆ V and E ′ ⊆ E

Induced Subgraph

G ′ = {V ′,E ′} where V ′ ⊆ V and E ′ consists of
all edges with both endpoints in V ′

(vertex-induced subgraph)
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Acyclic Coloring – Definitions

A proper vertex coloring such that . . .

Original Definition

. . . every (even) cycle uses ≥ 3 colors.

Bichromatic Induced Subgraphs

. . . the subgraph induced by any two color classes is a disjoint
collection of trees (a forest).
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credit: Claudio Rocchini (GNU Free Documentation License)

http://commons.wikimedia.org/wiki/File:Acyclic coloring.svg



Acyclic Coloring – Algorithms

Chordal Graphs

Solvable in linear time for this class of graphs.
(In fact, every coloring of a chordal graph is also an acyclic coloring.)
(Gebremedhin, Pothen, Tarafdar, & Walther 2009).

Bounded maximum degree ∆(G )

I If ∆(G ) ≤ 3, then G can be acyclically colored using 4 colors or
fewer in linear time (Skulrattanakulchai 2004).

I If ∆(G ) ≤ 5, then G can be acyclically colored using 9 colors or
fewer in linear time (Fertin & Raspaud 2008).
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Acyclic Coloring – Complexity

NP-Complete to determine whether χa(G ) ≤ 3
(Kostochka 1978)

NP-hard even when restricted to bipartite graphs
(Coleman & Cai 1986)
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Star Coloring

proper vertex coloring with no bichromatic P4

(That’s every P4, not just the induced ones)

P4

star chromatic number χs(G ) ≥ χa(G ) ≥ χ(G )
(A bichromatic cycle implies a bichromatic P4)
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Star Coloring – Definitions

A proper vertex coloring such that . . .

Original Definition

. . . every P4 uses ≥ 3 colors.

Bichromatic Induced Subgraphs

. . . the subgraph induced by any two color
classes is a disjoint collection of stars.



Star Coloring – Definitions

A proper vertex coloring such that . . .

Original Definition

. . . every P4 uses ≥ 3 colors.

Bichromatic Induced Subgraphs

. . . the subgraph induced by any two color
classes is a disjoint collection of stars.



Star Coloring – Complexity

NP-Complete to determine whether χs(G ) ≤ 3 for planar bipartite
graphs
(Albertson, Chappell, Kierstead, Kündgen, & Ramamurthi 2004)

NP-hard when restricted to bipartite graphs
(Coleman & Moré 1984)

Open Problem

For a split graph G , χs(G ) is either ω(G ) or ω(G ) + 1.
What is the complexity of determining this?
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Star Coloring – Direct Hessian Computation

h00 h01 h05
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

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


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9 

h01 h05 h00

h11 h13 h10

h22 h26 h23

h32 h31 + h34 h33 h37

h49 h44 h43

h56 h55 h50

h62 h66 h65 + h68 h67

h76 h73 h77

h89 h86 h88

h99 h94 h98





Star Coloring – Direct Hessian Computation

 h00 h01
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0 1 2 3
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h32 h33





Acyclic Coloring – Indirect Hessian Computation
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

0 0 1
1 0 0
1 0 0
0 0 1
1 0 0
1 0 0
0 1 0
1 0 0
1 0 0
0 0 1



0
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Acyclic Coloring – Indirect Hessian Computation


h00 h01 h03

h10 h11 h21

h12 h22 h23

h30 h32 h33



0

1 2

3


h01 + h03 h00

h11 h10 + h21

h12 + h23 h22
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Coloring for Efficient Derivative Matrix Computation

Hessian Computation

Star Coloring: Direct computation

Acyclic coloring: Indirect (substitution) computation

Jacobian Computation

Distance-2 Coloring: Direct, 1-dimensional computation

Star Bicoloring: Direct, 2-dimensional computation

Acyclic Bicoloring: Indirect (substitution), 2-dimensional computation

A. Gebremedhin, F. Manne, A. Pothen, What Color Is Your Jacobian?
Graph Coloring for Computing Derivatives, SIAM Review 47:4 (2005).



Outline

Restricted Coloring Problems
Acyclic coloring
Star Coloring

Applications to Hessian Computation
Star Coloring – Direct Hessian Computation
Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs
The Join Operation ∗
Main Theorem
The Binary Case

Cographs
Definitions and Characterizations
Algorithms for Acyclic and Star Coloring
Example

Future Work



The Join Operation ∗

G1 G2

G3

3⊗
i=1

Gi



The Join Operation ∗

G1 G2

G3

3⊗
i=1

Gi



The Main Theorem

Theorem
Let {Gi = (Vi ,Ei )}i∈I be a finite collection of graphs. Then

(i) χa

(⊗
i∈I

Gi

)
=
∑
i∈I

χa(Gi ) + min
j∈I

 ∑
i∈I,i 6=j

(|Vi | − χa(Gi ))

 ;

(ii) χs

(⊗
i∈I

Gi

)
=
∑
i∈I

χs(Gi ) + min
j∈I

 ∑
i∈I,i 6=j

(|Vi | − χs(Gi ))

 .
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The Binary Case

(G1 ∗ G2) ∗ G3 = G1 ∗ (G2 ∗ G3) = (G1 ∗ G3) ∗ G2 = · · ·

The join operation is commutative and associative
⇒ we will work with the binary case.

Lemma
Let G1 = (V1,E1) and G2 = (V2,E2) be graphs. Then

(i)
χa(G1 ∗ G2) = χa(G1) + χa(G2)

+ min {|V1| − χa(G1), |V2| − χa(G2)} ;

(ii)
χs(G1 ∗ G2) = χs(G1) + χs(G2)

+ min {|V1| − χs(G1), |V2| − χs(G2)} .
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Proof of Lemma
I G1 and G2 are induced subgraphs of G1 ∗ G2.
I G1 and G2 cannot share any colors.

χa(G1 ∗G2) ≥ χa(G1) + χa(G2)

+ min {|V1| − χa(G1), |V2| − χa(G2)}

χs(G1 ∗ G2) = χs(G1) + χs(G2) + min {|V1| − χs(G1), |V2| − χs(G2)}

G1

χa(G1) = 2χa(G1) = 2, |V1| = 4

G2

χa(G2) = 3χa(G2) = 3, |V2| = 4
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Cographs

Forbidden subgraph characterization

A graph is a cograph if and only if it is P4-free (does not contain P4

as an induced subgraph).

Restricted Coloring Characterization

A graph is a cograph if and only if every acyclic coloring is also a star
coloring.
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Cographs

Recursive Definition
A graph G is a cograph if and only if one of the following is true.

(i) |V | = 1;

(ii) there exists a collection {Gi}i∈I of cographs such that

G =
⋃
i∈I

Gi (disjoint union);

(iii) there exists a collection {Gi}i∈I of cographs such that

G =
⊗
i∈I

Gi (join).



Cographs and Cotrees

a

b

c

d

e

f

g

h

Canonical cotree
Unique (up to isomorphism)

1

0

a b

0

1

e f

1

g h

0

c d

Binary cotree

Algorithmically convenient
1

1

0

a b

0

c d

0

1

e f

1

g h



Acyclic and Star Coloring Cographs

Theorem
An optimal acyclic coloring of a cograph can be found in linear time.
Furthermore, the obtained coloring is also an optimal star coloring.
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Future Work

Extension to other graph classes

Tree-cographs Same operations as cographs, but start with trees
rather than single isolated vertices

P4-sparse No set of five vertices induces more than one P4.
(Generalize by adding a third composition operation.)

P4-lite . . .

P4-extendible . . .

Other Decompositions

Modular

Split

Clique

Tree

. . .
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Thank You!

Questions?
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